ZeePedia

Antennas & Transmission Lines:Cables, Waveguides, Connectors and adapters, Amplifiers

<< Network Design:Designing the physical network, Mesh networking with OLSR, Estimating capacity
Networking Hardware:Wired wireless, Choosing wireless components, Building an access point from a PC >>
img
4
Antennas & Transmission
Lines
The transmitter that generates the RF1 power to drive the antenna is usually
located at some distance from the antenna terminals. The connecting link
between the two is the RF transmission line. Its purpose is to carry RF
power from one place to another, and to do this as efficiently as possible.
From the receiver side, the antenna is responsible for picking up any radio
signals in the air and passing them to the receiver with the minimum amount
of distortion, so that the radio has its best chance to decode the signal. For
these reasons, the RF cable has a very important role in radio systems: it
must maintain the integrity of the signals in both directions.
There are two main categories of transmission lines: cables and waveguides.
Both types work well for efficiently carrying RF power at 2.4 GHz.
Cables
RF cables are, for frequencies higher than HF, almost exclusively coaxial
cables (or coax for short, derived from the words "of common axis"). Coax
cables have a core conductor wire surrounded by a non-conductive material
called dielectric, or simply insulation. The dielectric is then surrounded by
an encompassing shielding which is often made of braided wires. The di-
electric prevents an electrical connection between the core and the shielding.
Finally, the coax is protected by an outer casing which is generally made
1. Radio Frequency. See chapter two for discussion of electromagnetic waves.
95
img
96
Chapter 4: Antennas & Transmission Lines
from a PVC material. The inner conductor carries the RF signal, and the
outer shield prevents the RF signal from radiating to the atmosphere, and
also prevents outside signals from interfering with the signal carried by the
core. Another interesting fact is that high frequency electrical signal always
travels along the outer layer of a conductor: the larger the central conductor,
the better signal will flow. This is called the "skin effect".
Outer Jacket
Shield
Dielectric
Conductor
Figure 4.1: Coaxial cable with jacket, shield, dielectric, and core conductor.
Even though the coaxial construction is good at containing the signal on the
core wire, there is some resistance to the electrical flow: as the signal travels
down the core, it will fade away. This fading is known as attenuation, and for
transmission lines it is measured in decibels per meter (dB/m). The rate of
attenuation is a function of the signal frequency and the physical construction
of the cable itself. As the signal frequency increases, so does its attenuation.
Obviously, we need to minimize the cable attenuation as much as possible
by keeping the cable very short and using high quality cables.
Here are some points to consider when choosing a cable for use with micro-
wave devices:
1. "The shorter the better!" The first rule when you install a piece of cable is
to try to keep it as short as possible. The power loss is not linear, so
doubling the cable length means that you are going to lose much more
than twice the power. In the same way, reducing the cable length by half
gives you more than twice the power at the antenna. The best solution is
to place the transmitter as close as possible to the antenna, even when
this means placing it on a tower.
2. "The cheaper the worse!" The second golden rule is that any money you
invest in buying a good quality cable is a bargain. Cheap cables are
intended to be used at low frequencies, such as VHF. Microwaves re-
quire the highest quality cables available. All other options are nothing
but a dummy load2.
2. A dummy load is a device that dissipates RF energy without radiating it. Think of it as a heat
sink that works at radio frequencies.
Chapter 4: Antennas & Transmission Lines
97
3. Always avoid RG-58. It is intended for thin Ethernet networking, CB or
VHF radio, not for microwave.
4. Always avoid RG-213. It is intended for CB and HF radio. In this case the
cable diameter does not imply a high quality, or low attenuation.
5. Whenever possible, use Heliax (also called "Foam") cables for connect-
ing the transmitter to the antenna. When Heliax is unavailable, use the
best rated LMR cable you can find. Heliax cables have a solid or tubular
center conductor with a corrugated solid outer conductor to enable them
to flex. Heliax can be built in two ways, using either air or foam as a di-
electric. Air dielectric Heliax is the most expensive and guarantees the
minimum loss, but it is very difficult to handle. Foam dielectric Heliax is
slightly more lossy, but is less expensive and easier to install. A special
procedure is required when soldering connectors in order to keep the
foam dielectric dry and uncorrupted. LMR is a brand of coax cable avail-
able in various diameters that works well at microwave frequencies.
LMR-400 and LMR-600 are a commonly used alternative to Heliax.
6. Whenever possible, use cables that are pre-crimped and tested in a
proper lab. Installing connectors to cable is a tricky business, and is dif-
ficult to do properly even with the proper tools. Unless you have access
to equipment that can verify a cable you make yourself (such as a spec-
trum analyzer and signal generator, or time domain reflectometer), trou-
bleshooting a network that uses homemade cable can be difficult.
7. Don t abuse your transmission line. Never step over a cable, bend it too
much, or try to unplug a connector by pulling directly the cable. All of
those behaviors may change the mechanical characteristic of the cable
and therefore its impedance, short the inner conductor to the shield, or
even break the line. Those problems are difficult to track and recognize
and can lead to unpredictable behavior on the radio link.
Waveguides
Above 2 GHz, the wavelength is short enough to allow practical, efficient en-
ergy transfer by different means. A waveguide is a conducting tube through
which energy is transmitted in the form of electromagnetic waves. The tube
acts as a boundary that confines the waves in the enclosed space. The
Faraday cage effect prevents electromagnetic effects from being evident out-
side the guide. The electromagnetic fields are propagated through the
waveguide by means of reflections against its inner walls, which are consid-
ered perfect conductors. The intensity of the fields is greatest at the center
along the X dimension, and must diminish to zero at the end walls because
the existence of any field parallel to the walls at the surface would cause an
infinite current to flow in a perfect conductor. Waveguides, of course, cannot
carry RF in this fashion.
img
98
Chapter 4: Antennas & Transmission Lines
The X, Y and Z dimensions of a rectangular waveguide can be seen in the
following figure:
Y
Z
X
Figure 4.2: The X, Y, and Z dimensions of a rectangular waveguide.
There are an infinite number of ways in which the electric and magnetic fields
can arrange themselves in a waveguide for frequencies above the low cutoff
frequency. Each of these field configurations is called a mode. The modes
may be separated into two general groups. One group, designated TM
(Transverse Magnetic), has the magnetic field entirely transverse to the di-
rection of propagation, but has a component of the electric field in the direc-
tion of propagation. The other type, designated TE (Transverse Electric) has
the electric field entirely transverse, but has a component of magnetic field in
the direction of propagation.
The mode of propagation is identified by the group letters followed by two
subscript numerals. For example, TE 10, TM 11, etc. The number of possi-
ble modes increases with the frequency for a given size of guide, and there
is only one possible mode, called the dominant mode, for the lowest fre-
quency that can be transmitted. In a rectangular guide, the critical dimen-
sion is X. This dimension must be more than 0.5  at the lowest frequency
to be transmitted. In practice, the Y dimension usually is made about equal
to 0.5 X to avoid the possibility of operation in other than the dominant
mode. Cross-sectional shapes other than the rectangle can be used, the
most important being the circular pipe. Much the same considerations apply
as in the rectangular case. Wavelength dimensions for rectangular and cir-
cular guides are given in the following table, where X is the width of a rec-
tangular guide and r is the radius of a circular guide. All figures apply to the
dominant mode.
img
Chapter 4: Antennas & Transmission Lines
99
Type of guide
Rectangular
Circular
Cutoff wavelength
2X
3.41r
Longest wavelength
transmitted with little
1.6X
3.2r
attenuation
Shortest wavelength
before next mode
1.1X
2.8r
becomes possible
Energy may be introduced into or extracted from a waveguide by means of
either an electric or magnetic field. The energy transfer typically happens
through a coaxial line. Two possible methods for coupling to a coaxial line
are using the inner conductor of the coaxial line, or through a loop. A probe
which is simply a short extension of the inner conductor of the coaxial line
can be oriented so that it is parallel to the electric lines of force. A loop can
be arranged so that it encloses some of the magnetic lines of force. The point
at which maximum coupling is obtained depends upon the mode of propaga-
tion in the guide or cavity. Coupling is maximum when the coupling device is
in the most intense field.
If a waveguide is left open at one end, it will radiate energy (that is, it can be
used as an antenna rather than as a transmission line). This radiation can be
enhanced by flaring the waveguide to form a pyramidal horn antenna. We will
see an example of a practical waveguide antenna for WiFi later in this chap-
ter.
Cable Type
Core
Dielectric
Shield
Jacket
RG-58
0.9 mm
2.95 mm
3.8 mm
4.95 mm
RG-213
2.26 mm
7.24 mm
8.64 mm
10.29 mm
LMR-400
2.74 mm
7.24 mm
8.13 mm
10.29 mm
3/8" LDF
3.1 mm
8.12 mm
9.7 mm
11 mm
Here is a table contrasting the sizes of various common transmission lines.
Choose the best cable you can afford with the lowest possible attenuation at
the frequency you intend to use for your wireless link.
100
Chapter 4: Antennas & Transmission Lines
Connectors and adapters
Connectors allow a cable to be connected to another cable or to a compo-
nent of the RF chain. There are a wide variety of fittings and connectors de-
signed to go with various sizes and types of coaxial lines. We will describe
some of the most popular ones.
BNC connectors were developed in the late 40s. BNC stands for Bayonet
Neill Concelman, named after the men who invented it: Paul Neill and Carl
Concelman. The BNC product line is a miniature quick connect / disconnect
connector. It features two bayonet lugs on the female connector, and mating
is achieved with only a quarter turn of the coupling nut. BNC's are ideally
suited for cable termination for miniature to subminiature coaxial cable (RG-
58 to RG-179, RG-316, etc.) They have acceptable performance up to few
GHz. They are most commonly found on test equipment and 10base2 coax-
ial Ethernet cables.
TNC connectors were also invented by Neill and Concelman, and are a
threaded variation of the BNC. Due to the better interconnect provided by
the threaded connector, TNC connectors work well through about 12 GHz.
TNC stands for Threaded Neill Concelman.
Type N (again for Neill, although sometimes attributed to "Navy") connectors
were originally developed during the Second World War. They are usable up
to 18 Ghz, and very commonly used for microwave applications. They are
available for almost all types of cable. Both the plug / cable and plug / socket
joints are waterproof, providing an effective cable clamp.
SMA is an acronym for SubMiniature version A, and was developed in the
60s. SMA connectors are precision, subminiature units that provide excellent
electrical performance up to 18 GHz. These high-performance connectors
are compact in size and mechanically have outstanding durability.
The SMB name derives from SubMiniature B, and it is the second subminia-
ture design. The SMB is a smaller version of the SMA with snap-on coupling.
It provides broadband capability through 4 GHz with a snap-on connector
design.
MCX connectors were introduced in the 80s. While the MCX uses identical
inner contact and insulator dimensions as the SMB, the outer diameter of the
plug is 30% smaller than the SMB. This series provides designers with op-
tions where weight and physical space are limited. MCX provides broadband
capability though 6 GHz with a snap-on connector design.
img
Chapter 4: Antennas & Transmission Lines
101
In addition to these standard connectors, most WiFi devices use a variety of
proprietary connectors.  Often, these are simply standard microwave con-
nectors with the center conductor parts reversed, or the thread cut in the op-
posite direction. These parts are often integrated into a microwave system
using a short jumper called a pigtail that converts the non-standard connec-
tor into something more robust and commonly available.  Some of these
connectors include:
RP-TNC. This is a TNC connector with the genders reversed. These are
most commonly found on Linksys equipment, such as the WRT54G.
U.FL (also known as MHF). The U.FL is a patented connector made by Hi-
rose, while the MHF is a mechanically equivalent connector. This is possibly
the smallest microwave connector currently in wide use. The U.FL / MHF is
typically used to connect a mini-PCI radio card to an antenna or larger con-
nector (such as an N or TNC).
The MMCX series, which is also called a MicroMate, is one of the smallest
RF connector line and was developed in the 90s. MMCX is a micro-miniature
connector series with a lock-snap mechanism allowing for 360 degrees rota-
tion enabling flexibility. MMCX connectors are commonly found on PCMCIA
radio cards, such as those manufactured by Senao and Cisco.
MC-Card connectors are even smaller and more fragile than MMCX. They
have a split outer connector that breaks easily after just a few interconnects.
These are commonly found on Lucent / Orinoco / Avaya equipment.
Adapters, which are also called coaxial adapters, are short, two-sided connec-
tors which are used to join two cables or components which cannot be con-
nected directly. Adapters can be used to interconnect devices or cables with
different types. For example, an adapter can be used to connect an SMA con-
nector to a BNC. Adapters may also be used to fit together connectors of the
same type, but which cannot be directly joined because of their gender.
Figure 4.3: An N female barrel adapter.
For example a very useful adapter is the one which enables to join two Type
N connectors, having socket (female) connectors on both sides.
102
Chapter 4: Antennas & Transmission Lines
Choosing the proper connector
1. "The gender question." Virtually all connectors have a well defined gen-
der consisting of either a pin (the "male" end) or a socket (the "female"
end). Usually cables have male connectors on both ends, while RF de-
vices (i.e. transmitters and antennas) have female connectors. Devices
such as directional couplers and line-through measuring devices may
have both male and female connectors. Be sure that every male con-
nector in your system mates with a female connector.
2. "Less is best!" Try to minimize the number of connectors and adapters in
the RF chain. Each connector introduces some additional loss (up to a
few dB for each connection, depending on the connector!)
3. "Buy, don t build!" As mentioned earlier, buy cables that are already ter-
minated with the connectors you need whenever possible. Soldering
connectors is not an easy task, and to do this job properly is almost im-
possible for small connectors as U.FL and MMCX. Even terminating
"Foam" cables is not an easy task.
4. Don t use BNC for 2.4 GHz or higher. Use N type connectors (or SMA,
SMB, TNC, etc.)
5. Microwave connectors are precision-made parts, and can be easily
damaged by mistreatment. As a general rule, you should rotate the outer
sleeve to tighten the connector, leaving the rest of the connector (and
cable) stationary. If other parts of the connector are twisted while tighten-
ing or loosening, damage can easily occur.
6. Never step over connectors, or drop connectors on the floor when dis-
connecting cables (this happens more often than what you may imagine,
especially when working on a mast over a roof).
7. Never use tools like pliers to tighten connectors. Always use your hands.
When working outside, remember that metals expand at high tempera-
tures and reduce their size at low temperatures: a very tightened connec-
tor in the summer can bind or even break in winter.
Antennas & radiation patterns
Antennas are a very important component of communication systems. By
definition, an antenna is a device used to transform an RF signal traveling on
a conductor into an electromagnetic wave in free space. Antennas demon-
strate a property known as reciprocity, which means that an antenna will
maintain the same characteristics regardless if whether it is transmitting or
receiving.  Most antennas are resonant devices, which operate efficiently
over a relatively narrow frequency band. An antenna must be tuned to the
same frequency band of the radio system to which it is connected, otherwise
Chapter 4: Antennas & Transmission Lines
103
the reception and the transmission will be impaired. When a signal is fed into
an antenna, the antenna will emit radiation distributed in space in a certain
way. A graphical representation of the relative distribution of the radiated
power in space is called a radiation pattern.
Antenna term glossary
Before we talk about specific antennas, there are a few common terms that
must be defined and explained:
Input Impedance
For an efficient transfer of energy, the impedance of the radio, antenna, and
transmission cable connecting them must be the same. Transceivers and
their transmission lines are typically designed for 50  impedance. If the an-
tenna has an impedance different than 50 , then there is a mismatch and an
impedance matching circuit is required. When any of these components are
mismatched, transmission efficiency suffers.
Return loss
Return loss is another way of expressing mismatch. It is a logarithmic ratio
measured in dB that compares the power reflected by the antenna to the
power that is fed into the antenna from the transmission line. The relation-
ship between SWR and return loss is the following:
SWR
Return Loss (in dB) = 20log10
SWR-1
While some energy will always be reflected back into the system, a high re-
turn loss will yield unacceptable antenna performance.
Bandwidth
The bandwidth of an antenna refers to the range of frequencies over which
the antenna can operate correctly. The antenna's bandwidth is the number of
Hz for which the antenna will exhibit an SWR less than 2:1.
The bandwidth can also be described in terms of percentage of the center
frequency of the band.
FH - FL
Bandwidth = 100
FC
104
Chapter 4: Antennas & Transmission Lines
...where FH is the highest frequency in the band, FL is the lowest frequency in
the band, and FC is the center frequency in the band.
In this way, bandwidth is constant relative to frequency. If bandwidth  was ex-
pressed in absolute units of frequency, it would be different depending upon the
center frequency. Different types of antennas have different bandwidth limitations.
Directivity and Gain
Directivity is the ability of an antenna to focus energy in a particular direction
when transmitting, or to receive energy from a particular direction when re-
ceiving. If a wireless link uses fixed locations for both ends, it is possible to
use antenna directivity to concentrate the radiation beam in the wanted direc-
tion. In a mobile application where the transceiver is not fixed, it may be im-
possible to predict where the transceiver will be, and so the antenna should
ideally radiate as well as possible in all directions. An omnidirectional an-
tenna is used in these applications.
Gain is not a quantity which can be defined in terms of a physical quantity
such as the Watt or the Ohm, but it is a dimensionless ratio. Gain is given in
reference to a standard antenna. The two most common reference antennas
are the isotropic antenna and the resonant half-wave dipole antenna.
The isotropic antenna radiates equally well in all directions. Real isotropic
antennas do not exist, but they provide useful and simple theoretical antenna
patterns with which to compare real antennas. Any real antenna will radiate
more energy in some directions than in others. Since antennas cannot create
energy, the total power radiated is the same as an isotropic antenna. Any
additional energy radiated in the directions it favors is offset by equally less
energy radiated in all other directions.
The gain of an antenna in a given direction is the amount of energy radiated
in that direction compared to the energy an isotropic antenna would radiate in
the same direction when driven with the same input power. Usually we are
only interested in the maximum gain, which is the gain in the direction in
which the antenna is radiating most of the power. An antenna gain of 3 dB
compared to an isotropic antenna would be written as 3 dBi. The resonant
half-wave dipole can be a useful standard for comparing to other antennas at
one frequency or over a very narrow band of frequencies. To compare the
dipole to an antenna over a range of frequencies requires a number of di-
poles of different lengths. An antenna gain of 3 dB compared to a dipole an-
tenna would be written as 3 dBd.
The method of measuring gain by comparing the antenna under test against a
known standard antenna, which has a calibrated gain, is technically known as
a gain transfer technique. Another method for measuring gain is the 3 anten-
img
Chapter 4: Antennas & Transmission Lines
105
nas method, where the transmitted and received power at the antenna termi-
nals is measured between three arbitrary antennas at a known fixed distance.
Radiation Pattern
The radiation pattern or antenna pattern describes the relative strength of
the radiated field in various directions from the antenna, at a constant dis-
tance. The radiation pattern is a reception pattern as well, since it also de-
scribes the receiving properties of the antenna. The radiation pattern is three-
dimensional, but usually the measured radiation patterns  are a  two-
dimensional slice of the three-dimensional pattern, in the horizontal or verti-
cal planes. These pattern measurements are presented in either a rectangu-
lar or a polar format. The following figure shows a rectangular plot presenta-
tion of a typical ten-element Yagi. The detail is good but it is difficult to visual-
ize the antenna behavior in different directions.
dB
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-180°
-140°
-100°
-60°
-20°
20°
60°
100°
140°
180°
Figure 4.4: A rectangular plot of a yagi radiation pattern.
Polar coordinate systems are used almost universally. In the polar-coordinate
graph, points are located by projection along a rotating axis (radius) to an
intersection with one of several concentric circles. The following is a polar
plot of the same 10 element Yagi antenna.
Polar coordinate systems may be divided generally in two classes: linear
and logarithmic. In the linear coordinate system, the concentric circles are
equally spaced, and are graduated. Such a grid may be used to prepare a
linear plot of the power contained in the signal. For ease of comparison, the
equally spaced concentric circles may be replaced with appropriately placed
circles representing the decibel response, referenced to 0 dB at the outer
edge of the plot. In this kind of plot the minor lobes are suppressed. Lobes
with peaks more than 15 dB or so below the main lobe disappear because of
their small size. This grid enhances plots in which the antenna has a high
directivity and small minor lobes. The voltage of the signal, rather than the
power, can also be plotted on a linear coordinate system. In this case, too,
img
106
Chapter 4: Antennas & Transmission Lines
the directivity is enhanced and the minor lobes suppressed, but not in the
same degree as in the linear power grid.
270°
90°
180°
Figure 4.5: A linear polar plot of the same yagi.
In the logarithmic polar coordinate system the concentric grid lines are
spaced periodically according to the logarithm of the voltage in the signal.
Different values may be used for the logarithmic constant of periodicity, and
this choice will have an effect on the appearance of the plotted patterns.
Generally the 0 dB reference for the outer edge of the chart is used. With this
type of grid, lobes that are 30 or 40 dB below the main lobe are still distin-
guishable. The spacing between points at 0 dB and at -3 dB is greater than
the spacing between -20 dB and -23 dB, which is greater than the spacing
between -50 dB and -53 dB. The spacing thus correspond to the relative sig-
nificance of such changes in antenna performance.
A modified logarithmic scale emphasizes the shape of the major beam while
compressing very low-level (>30 dB) sidelobes towards the center of the pattern.
This is shown in Figure 4.6.
There are two kinds of radiation pattern: absolute and relative. Absolute
radiation patterns are presented in absolute units of field strength or power.
Relative radiation patterns are referenced in relative units of field strength or
power. Most radiation pattern measurements are relative to the isotropic an-
tenna, and the gain transfer method is then used to establish the absolute
gain of the antenna.
img
Chapter 4: Antennas & Transmission Lines
107
270°
90°
180°
Figure 4.6: The logarithmic polar plot
The radiation pattern in the region close to the antenna is not the same as
the pattern at large distances. The term near-field refers to the field pattern
that exists close to the antenna, while the term far-field refers to the field pat-
tern at large distances. The far-field is also called the radiation field, and is
what is most commonly of interest. Ordinarily, it is the radiated power that is
of interest, and so antenna patterns are usually measured in the far-field re-
gion. For pattern measurement it is important to choose a distance suffi-
ciently large to be in the far-field, well out of the near-field. The minimum
permissible distance depends on the dimensions of the antenna in relation to
the wavelength. The accepted formula for this distance is:
2d2
rmin =
w
here rmin is the minimum distance from the antenna, d is the largest dimen-
sion of the antenna, and  is the wavelength.
Beamwidth
An antenna's beamwidth is usually understood to mean the half-power
beamwidth. The peak radiation intensity is found, and then the points on ei-
ther side of the peak which represent half the power of the peak intensity are
located. The angular distance between the half power points is defined as
the beamwidth. Half the power expressed in decibels is -3dB, so the half
power beamwidth is sometimes referred to as the 3dB beamwidth. Both hori-
zontal and vertical beamwidth are usually considered.
img
108
Chapter 4: Antennas & Transmission Lines
Assuming that most of the radiated power is not divided into sidelobes, then
the directive gain is inversely proportional to the beamwidth: as the beam-
width decreases, the directive gain increases.
Sidelobes
No antenna is able to radiate all the energy in one preferred direction. Some
is inevitably radiated in other directions. These smaller peaks are referred to
as sidelobes, commonly specified in dB down from the main lobe.
Nulls
In an antenna radiation pattern, a null is a zone in which the effective radi-
ated power is at a minimum. A null often has a narrow directivity angle com-
pared to that of the main beam. Thus, the null is useful for several purposes,
such as suppression of interfering signals in a given direction.
Polarization
Polarization is defined as the orientation of the electric field of an electro-
magnetic wave. Polarization is in general described by an ellipse. Two spe-
cial cases of elliptical polarization are linear polarization and circular po-
larization. The initial polarization of a radio wave is determined by the an-
tenna.
direction of propagation
electric field
magnetic field
Figure 4.7: The electrical wave is perpendicular to magnetic wave, both of which are
perpendicular to the direction of propagation.
With linear polarization, the electric field vector stays in the same plane all
the time. The electric field may leave the antenna in a vertical orientation, a
horizontal orientation, or at some angle between the two. Vertically polar-
ized radiation is somewhat less affected by reflections over the transmis-
sion path. Omnidirectional antennas always have vertical polarization. With
horizontal polarization, such reflections cause variations in received sig-
nal strength. Horizontal antennas are less likely to pick up man-made inter-
ference, which ordinarily is vertically polarized.
Chapter 4: Antennas & Transmission Lines
109
In circular polarization the electric field vector appears to be rotating with
circular motion about the direction of propagation, making one full turn for
each RF cycle. This rotation may be right-hand or left-hand. Choice of polari-
zation is one of the design choices available to the RF system designer.
Polarization Mismatch
In order to transfer maximum power between a transmit and a receive an-
tenna, both antennas must have the same spatial orientation, the same po-
larization sense, and the same axial ratio.
When the antennas are not aligned or do not have the same polarization,
there will be a reduction in power transfer between the two antennas. This
reduction in power transfer will reduce the overall system efficiency and per-
formance.
When the transmit and receive antennas are both linearly polarized, physical
antenna misalignment will result in a polarization mismatch loss, which can
be determined using the following formula:
Loss (dB) = 20 log (cos
)
...where  is the difference in alignment angle between the two antennas. For
15° the loss is approximately 0.3dB, for 30° we lose 1.25dB, for 45° we lose
3dB and for 90° we have an infinite loss.
In short, the greater the mismatch in polarization between a transmitting and
receiving antenna, the greater the apparent loss.  In the real world, a 90°
mismatch in polarization is quite large but not infinite. Some antennas, such
as yagis or can antennas, can be simply rotated 90° to match the polarization
of the other end of the link. You can use the polarization effect to your ad-
vantage on a point-to-point link. Use a monitoring tool to observe interfer-
ence from adjacent networks, and rotate one antenna until you see the low-
est received signal. Then bring your link online and orient the other end to
match polarization. This technique can sometimes be used to build stable
links, even in noisy radio environments.
Front-to-back ratio
It is often useful to compare the front-to-back ratio of directional antennas.
This is the ratio of the maximum directivity of an antenna to its directivity in
the opposite direction. For example, when the radiation pattern is plotted on
a relative dB scale, the front-to-back ratio is the difference in dB between the
level of the maximum radiation in the forward direction and the level of radia-
tion at 180 degrees.
110
Chapter 4: Antennas & Transmission Lines
This number is meaningless for an omnidirectional antenna, but it gives you
an idea of the amount of power directed forward on a very directional an-
tenna.
Types of Antennas
A classification of antennas can be based on:
· Frequency and size. Antennas used for HF are different from antennas
used for VHF, which in turn are different from antennas for microwave. The
wavelength is different at different frequencies, so the antennas must be
different in size to radiate signals at the correct wavelength. We are par-
ticularly interested in antennas working in the microwave range, especially
in the 2.4 GHz and 5 GHz frequencies. At 2.4 GHz the wavelength is 12.5
cm, while at 5 GHz it is 6 cm.
· Directivity. Antennas can be omnidirectional, sectorial or directive. Omni-
directional antennas radiate roughly the same pattern all around the an-
tenna in a complete 360° pattern. The most popular types of omnidirec-
tional antennas are the dipole and the ground plane. Sectorial antennas
radiate primarily in a specific area. The beam can be as wide as 180 de-
grees, or as narrow as 60 degrees. Directional or directive antennas are
antennas in which the beamwidth is much narrower than in sectorial an-
tennas. They have the highest gain and are therefore used for long dis-
tance links. Types of directive antennas are the Yagi, the biquad, the horn,
the helicoidal, the patch antenna, the parabolic dish, and many others.
· Physical construction.  Antennas can be constructed in many different
ways, ranging from simple wires, to parabolic dishes, to coffee cans.
When considering antennas suitable for 2.4 GHz WLAN use, another classi-
fication can be used:
· Application. Access points tend to make point-to-multipoint networks,
while remote links are point-to-point. Each of these suggest different types
of antennas for their purpose. Nodes that are used for multipoint access
will likely use omni antennas which radiate equally in all directions, or sec-
torial antennas which focus into a small area. In the point-to-point case,
antennas are used to connect two single locations together. Directive an-
tennas are the primary choice for this application.
A brief list of common type of antennas for the 2.4 GHz frequency is pre-
sented now, with a short description and basic information about their char-
acteristics.
img
Chapter 4: Antennas & Transmission Lines
111
1/4 wavelength ground plane
The 1/4 wavelength ground plane antenna is very simple in its construction
and is useful for communications when size, cost and ease of construction
are important. This antenna is designed to transmit a vertically polarized sig-
nal. It consists of a 1/4 wave element as half-dipole and three or four 1/4
wavelength ground elements bent 30 to 45 degrees down. This set of ele-
ments, called radials, is known as a ground plane.
Figure 4.8: Quarter wavelength ground plane antenna.
This is a simple and effective antenna that can capture a signal equally from
all directions. To increase the gain, the signal can be flattened out to take
away focus from directly above and below, and providing more focus on the
horizon. The vertical beamwidth represents the degree of flatness in the fo-
cus. This is useful in a Point-to-Multipoint situation, if all the other antennas
are also at the same height. The gain of this antenna is in the order of 2 - 4
dBi.
Yagi antenna
A basic Yagi consists of a certain number of straight elements, each measur-
ing approximately half wavelength. The driven or active element of a Yagi is
the equivalent of a center-fed, half-wave dipole antenna. Parallel to the
driven element, and approximately 0.2 to 0.5 wavelength on either side of it,
are straight rods or wires called reflectors and directors, or simply passive
elements. A reflector is placed behind the driven element and is slightly
longer than half wavelength; a director is placed in front of the driven element
and is slightly shorter than half wavelength. A typical Yagi has one reflector
and one or more directors. The antenna propagates electromagnetic field
energy in the direction running from the driven element toward the directors,
and is most sensitive to incoming electromagnetic field energy in this same
direction. The more directors a Yagi has, the greater the gain. As more direc-
img
112
Chapter 4: Antennas & Transmission Lines
tors are added to a Yagi, it therefore becomes longer. Following is the photo
of a Yagi antenna with 6 directors and one reflector.
Figure 4.9: A Yagi antenna.
Yagi antennas are used primarily for Point-to-Point links, have a gain from 10
to 20 dBi and a horizontal beamwidth of 10 to 20 degrees.
Horn
The horn antenna derives its name from the characteristic flared appear-
ance. The flared portion can be square, rectangular, cylindrical or conical.
The direction of maximum radiation corresponds with the axis of the horn. It
is easily fed with a waveguide, but can be fed with a coaxial cable and a
proper transition.
Figure 4.10: Feed horn made from a food can.
Horn antennas are commonly used as the active element in a dish antenna.
The horn is pointed toward the center of the dish reflector. The use of a horn,
rather than a dipole antenna or any other type of antenna, at the focal point
of the dish minimizes loss of energy around the edges of the dish reflector. At
2.4 GHz, a simple horn antenna made with a tin can has a gain in the order
of 10 - 15 dBi.
img
Chapter 4: Antennas & Transmission Lines
113
Parabolic Dish
Antennas based on parabolic reflectors are the most common type of directive
antennas when a high gain is required. The main advantage is that they can be
made to have gain and directivity as large as required. The main disadvantage
is that big dishes are difficult to mount and are likely to have a large windage.
Figure 4.11: A solid dish antenna.
Dishes up to one meter are usually made from solid material. Aluminum is
frequently used for its weight advantage, its durability and good electrical
characteristics. Windage increases rapidly with dish size and soon becomes
a severe problem. Dishes which have a reflecting surface that uses an open
mesh are frequently used. These have a poorer front-to-back ratio, but are
safer to use and easier to build. Copper, aluminum, brass, galvanized steel
and iron are suitable mesh materials.
BiQuad
The BiQuad antenna is simple to build and offers good directivity and gain for
Point-to-Point communications. It consists of a two squares of the same size of
1/4 wavelength as a radiating element and of a metallic plate or grid as reflec-
tor. This antenna has a beamwidth of about 70 degrees and a gain in the order
of 10-12 dBi. It can be used as stand-alone antenna or as feeder for a Para-
bolic Dish. The polarization is such that looking at the antenna from the front, if
the squares are placed side by side the polarization is vertical.
img
114
Chapter 4: Antennas & Transmission Lines
Figure 4.12: The BiQuad.
Other Antennas
Many other types of antennas exist and new ones are created following the
advances in technology.
· Sector or Sectorial antennas: they are widely used in cellular telephony
infrastructure and are usually built adding a reflective plate to one or more
phased dipoles. Their horizontal beamwidth can be as wide as 180 de-
grees, or as narrow as 60 degrees, while the vertical is usually much nar-
rower. Composite antennas can be built with many Sectors to cover a
wider horizontal range (multisectorial antenna).
· Panel or Patch antennas: they are solid flat panels used for indoor cover-
age, with a gain up to 20 dB.
Reflector theor y
The basic property of a perfect parabolic reflector is that it converts a spheri-
cal wave irradiating from a point source placed at the focus into a plane
wave. Conversely, all the energy received by the dish from a distant source is
reflected to a single point at the focus of the dish. The position of the focus,
or focal length, is given by:
D2
f=
16
c
...where D is the dish diameter and c is the depth of the parabola at its center.
Chapter 4: Antennas & Transmission Lines
115
The size of the dish is the most important factor since it determines the
maximum gain that can be achieved at the given frequency and the resulting
beamwidth. The gain and beamwidth obtained are given by:
D)2
(
Gain =
n
2
B
70
eamwidth =
D
...where D is the dish diameter and n is the efficiency. The efficiency is de-
termined mainly by the effectiveness of illumination of the dish by the feed,
but also by other factors. Each time the diameter of a dish is doubled, the
gain is four times, or 6 dB, greater. If both stations double the size of their
dishes, signal strength can be increased of 12 dB, a very substantial gain. An
efficiency of 50% can be assumed when hand-building the antenna.
The ratio f / D (focal length/diameter of the dish) is the fundamental factor
governing the design of the feed for a dish. The ratio is directly related to the
beamwidth of the feed necessary to illuminate the dish effectively. Two
dishes of the same diameter but different focal lengths require different de-
sign of feed if both are to be illuminated efficiently. The value of 0.25 corre-
sponds to the common focal-plane dish in which the focus is in the same
plane as the rim of the dish.
Amplifiers
As mentioned earlier, antennas do not actually create power. They simply
direct all available power into a particular pattern. By using a power ampli-
fier, you can use DC power to augment your available signal. An amplifier
connects between the radio transmitter and the antenna, and has an addi-
tional lead that connects to a power source. Amplifiers are available that
work at 2.4 GHz, and can add several Watts of power to your transmission.
These devices sense when an attached radio is transmitting, and quickly
power up and amplify the signal. They then switch off again when transmis-
sion ends. When receiving, they also add amplification to the signal before
sending it to the radio.
Unfortunately, simply adding amplifiers will not magically solve all of your
networking problems. We do not discuss power amplifiers at length in this
book because there are a number of significant drawbacks to using them:
· They are expensive. Amplifiers must work at relatively wide bandwidths at
2.4 GHz, and must switch quickly enough to work for Wi-Fi applications.
116
Chapter 4: Antennas & Transmission Lines
These amplifiers do exist, but they tend to cost several hundred dollars per
unit.
· You will need at least two. Whereas antennas provide reciprocal gain
that benefits both sides of a connection, amplifiers work best at amplifying
a transmitted signal. If you only add an amplifier to one end of a link with
insufficient antenna gain, it will likely be able to be heard but will not be
able to hear the other end.
· They provide no additional directionality. Adding antenna gain provides
both gain and directionality benefits to both ends of the link. They not only
improve the available amount of signal, but tend to reject noise from other
directions. Amplifiers blindly amplify both desired and interfering signals,
and can make interference problems worse.
· Amplifiers generate noise for other users of the band. By increasing
your output power, you are creating a louder source of noise for other us-
ers of the unlicensed band. This may not be much of an issue today in
rural areas, but it can cause big problems in populated areas. Conversely,
adding antenna gain will improve your link and can actually decrease the
noise level for your neighbors.
· Using amplifiers probably isn t legal. Every country imposes power lim-
its on use of unlicensed spectrum. Adding an antenna to a highly amplified
signal will likely cause the link to exceed legal limits.
Using amplifiers is often compared to the inconsiderate neighbor who wants
to listen to the radio outside their home, and so turns it up to full volume.
They might even "improve" reception by pointing their speakers out the win-
dow. While they may now be able to hear the radio, so must everyone else
on the block. This approach may scale to exactly one user, but what hap-
pens when the neighbors decide to do the same thing with their radios? Us-
ing amplifiers for a wireless link causes roughly the same effect at 2.4 GHz.
Your link may "work better" for the moment, but you will have problems when
other users of the band decide to use amplifiers of their own.
By using higher gain antennas rather than amplifiers, you avoid all of these
problems. Antennas cost far less than amps, and can improve a link simply
by changing the antenna on one end. Using more sensitive radios and good
quality cable also helps significantly on long distance shots.  These tech-
niques are unlikely to cause problems for other users of the band, and so we
recommend pursuing them before adding amplifiers.
Practical antenna designs
The cost of 2.4 GHz antennas has fallen dramatically since the introduction of
802.11b. Innovative designs use simpler parts and fewer materials to achieve
Chapter 4: Antennas & Transmission Lines
117
impressive gain with relatively little machining.  Unfortunately, availability of
good antennas is still limited in many areas of the world, and importing them
can be prohibitively expensive. While actually designing an antenna can be a
complex and error-prone process, constructing antennas from locally available
components is very straightforward, and can be a lot of fun. We present four
practical antenna designs that can be built for very little money.
USB dongle as dish feed
Possibly the simplest antenna design is the use of a parabola to direct the
output of a USB wireless device (known in networking circles as a USB
dongle).  By placing the internal dipole antenna present in USB wireless
dongles at the focus of a parabolic dish, you can provide significant gain
without the need to solder or even open the wireless device itself.  Many
kinds of parabolic dishes will work, including satellite dishes, television an-
tennas, and even metal cookware (such as a wok, round lid, or strainer). As
a bonus, inexpensive and lossless USB cable is then used to feed the an-
tenna, eliminating the need for expensive coaxial cable or Heliax.
To build a USB dongle parabolic, you will need to find the orientation and loca-
tion of the dipole inside the dongle. Most devices orient the dipole to be paral-
lel with the short edge of the dongle, but some will mount the dipole perpen-
dicular to the short edge. You can either open the dongle and look for yourself,
or simply try the dongle in both positions to see which provides more gain.
To test the antenna, point it at an access point several meters away, and con-
nect the USB dongle to a laptop. Using the laptop s client driver or a tool such
as Netstumbler (see Chapter 6), observe the received signal strength of the
access point. Now, slowly move the dongle in relation to the parabolic while
watching the signal strength meter. You should see a significant improvement
in gain (20 dB or more) when you find the proper position. The proper position
will vary depending on the shape of the parabola and the construction of the
USB dongle. Try various positions while watching your signal strength meter
until you find the optimum location.
Once the best location is found, securely fix the dongle in place. You will
need to waterproof the dongle and cable if the antenna is used outdoors.
Use a silicone compound or a piece of PVC tubing to seal the electronics
against the weather. Many USB-fed parabolic designs and ideas are docu-
mented online at http://www.usbwifi.orcon.net.nz/ .
Collinear omni
This antenna is very simple to build, requiring just a piece of wire, an N
socket and a square metallic plate. It can be used for indoor or outdoor point-
to-multipoint short distance coverage. The plate has a hole drilled in the mid-
img
118
Chapter 4: Antennas & Transmission Lines
dle to accommodate an N type chassis socket that is screwed into place. The
wire is soldered to the center pin of the N socket and has coils to separate
the active phased elements. Two versions of the antenna are possible: one
with two phased elements and two coils and another with four phased ele-
ments and four coils. For the short antenna the gain will be around 5 dBi,
while the long one with four elements will have 7 to 9 dBi of gain. We are go-
ing to describe how to build the long antenna only.
Parts list and tools required
· One screw-on N-type female connector
· 50 cm of copper or brass wire of 2 mm of diameter
· 10x10 cm or greater square metallic plate
Figure 4.13: 10 cm x 10 cm aluminum plate.
· Ruler
· Pliers
· File
· Soldering iron and solder
· Drill with a set of bits for metal (including a 1.5 cm diameter bit)
· A piece of pipe or a drill bit with a diameter of 1 cm
· Vice or clamp
· Hammer
· Spanner or monkey wrench
Construction
1. Straighten the wire using the vice.
img
Chapter 4: Antennas & Transmission Lines
119
Figure 4.14: Make the wire as straight as you can.
2. With a marker, draw a line at 2.5 cm starting from one end of the wire.
On this line, bend the wire at 90 degrees with the help of the vice and of
the hammer.
Figure 4.15: Gently tap the wire to make a sharp bend.
3. Draw another line at a distance of 3.6 cm from the bend. Using the vice
and the hammer, bend once again the wire over this second line at 90
degrees, in the opposite direction to the first bend but in the same plane.
The wire should look like a Z .
img
120
Chapter 4: Antennas & Transmission Lines
Figure 4.16: Bend the wire into a "Z" shape.
4. We will now twist the Z portion of the wire to make a coil with a diameter
of 1 cm. To do this, we will use the pipe or the drill bit and curve the wire
around it, with the help of the vice and of the pliers.
Figure 4.17: Bend the wire around the drill bit to make a coil.
The coil will look like this:
Figure 4.18: The completed coil.
5. You should make a second coil at a distance of 7.8 cm from the first one.
Both coils should have the same turning direction and should be placed
on the same side of the wire. Make a third and a fourth coil following the
img
Chapter 4: Antennas & Transmission Lines
121
same procedure, at the same distance of 7.8 cm one from each other.
Trim the last phased element at a distance of 8.0 cm from the fourth coil.
Figure 4.19: Try to keep it as straight possible.
If the coils have been made correctly, it should now be possible to insert a
pipe through all the coils as shown.
Figure 4.20: Inserting a pipe can help to straighten the wire.
6. With a marker and a ruler, draw the diagonals on the metallic plate, find-
ing its center. With a small diameter drill bit, make a pilot hole at the cen-
ter of the plate. Increase the diameter of the hole using bits with an in-
creasing diameter.
img
122
Chapter 4: Antennas & Transmission Lines
Figure 4.21: Drilling the hole in the metal plate.
The hole should fit the N connector exactly. Use a file if needed.
Figure 4.22: The N connector should fit snugly in the hole.
7. To have an antenna impedance of 50 Ohms, it is important that the visi-
ble surface of the internal insulator  of the connector (the white area
around the central pin) is at the same level as the surface of the plate.
For this reason, cut 0.5 cm of copper pipe with an external diameter of 2
cm, and place it between the connector and the plate.
Figure 4.23: Adding a copper pipe spacer helps to match the impedance of the an-
tenna to 50 Ohms.
img
Chapter 4: Antennas & Transmission Lines
123
8. Screw the nut to the connector to fix it firmly on the plate using the spanner.
Figure 4.24: Secure the N connector tightly to the plate.
9. Smooth with the file the side of the wire which is 2.5 cm long, from the
first coil. Tin the wire for around 0.5 cm at the smoothed end helping
yourself with the vice.
Figure 4.25: Add a little solder to the end of the wire to "tin" it prior to soldering.
10. With the soldering iron, tin the central pin of the connector. Keeping the
wire vertical with the pliers, solder its tinned side in the hole of the central
pin. The first coil should be at 3.0 cm from the plate.
img
124
Chapter 4: Antennas & Transmission Lines
Figure 4.26: The first coil should start 3.0 cm from the surface of the plate.
11. We are now going to stretch the coils extending the total vertical length of
the wire. Using the use the vice and the pliers, you should pull the cable
so that the final length of the coil is of 2.0 cm.
Figure 4.27: Stretching the coils. Be very gentle and try not to scrape the surface of
the wire with the pliers.
12. Repeat the same procedure for the other three coils, stretching their
length to 2.0 cm.
img
Chapter 4: Antennas & Transmission Lines
125
Figure 4.28: Repeat the stretching procedure for all of the remaining coils.
13. At the end the antenna should measure 42.5 cm from the plate to the top.
Figure 4.29: The finished antenna should be 42.5 cm from the plate to the end of the
wire.
14. If you have a spectrum analyzer with a tracking generator and a direc-
tional coupler, you can check the curve of the reflected power of the an-
tenna. The picture below shows the display of the spectrum analyzer.
img
126
Chapter 4: Antennas & Transmission Lines
Figure 4.30: A spectrum plot of the reflected power of the collinear omni.
If you intend to use this antenna outside, you will need to weatherproof it.
The simplest method is to enclose the whole thing in a large piece of PVC
pipe closed with caps. Cut a hole at the bottom for the transmission line, and
seal the antenna shut with silicone or PVC glue.
Cantenna
The waveguide antenna, sometimes called a Cantenna, uses a tin can as a
waveguide and a short wire soldered on an N connector as a probe for
coaxial-cable-to-waveguide transition. It can be easily built at just the price of
the connector, recycling a food, juice, or other tin can. It is a directional an-
tenna, useful for short to medium distance point-to-point links. It may be also
used as a feeder for a parabolic dish or grid.
Not all cans are good for building an antenna because there are dimensional
constraints.
1. The acceptable values for the diameter D of the feed are between 0.60
and 0.75 wavelength in air at the design frequency. At 2.44 GHz the
wavelength  is 12.2 cm, so the can diameter should be in the range of
7.3 - 9.2 cm.
2. The length L of the can preferably should be at least 0.75 G , where G
is the guide wavelength and is given by:
img
Chapter 4: Antennas & Transmission Lines
127
G
=
/ 1.706D)2)
sqrt(1 - (
For D = 7.3 cm, we need a can of at least 56.4 cm, while for D = 9.2 cm we
need a can of at least 14.8 cm. Generally the smaller the diameter, the longer
the can should be. For our example, we will use oil cans that have a diameter
of 8.3 cm and a height of about 21 cm.
3. The probe for coaxial cable to waveguide transition should be positioned
at a distance S from the bottom of the can, given by:
S = 0.25
G
Its length should be 0.25 , which at 2.44 GHz corresponds to 3.05 cm.
L
S
D
Figure 4.31: Dimensional constraints on the cantenna
The gain for this antenna will be in the order of 10 to 14 dBi, with a beam-
width of around 60 degrees.
img
128
Chapter 4: Antennas & Transmission Lines
Figure 4.32: The finished cantenna.
Parts list
· one screw-on N-type female connector
· 4 cm of copper or brass wire of 2 mm of diameter
· an oil can of 8.3 cm of diameter and 21 cm of height
Figure 4.33: Parts needed for the can antenna.
img
Chapter 4: Antennas & Transmission Lines
129
Tools required
· Can opener
· Ruler
· Pliers
· File
· Soldering iron
· Solder
· Drill with a set of bits for metal (with a 1.5 cm diameter bit)
· Vice or clamp
· Spanner or monkey wrench
· Hammer
· Punch
Construction
1. With the can opener, carefully remove the upper part of the can.
Figure 4.34: Be careful of sharp edges when opening the can.
The circular disk has a very sharp edge. Be careful when handling it! Empty
the can and wash it with soap. If the can contained pineapple, cookies, or
some other tasty treat, have a friend serve the food.
2. With the ruler, measure 6.2 cm from the bottom of the can and draw a
point. Be careful to measure from the inner side of the bottom. Use a
punch (or a small drill bit or a Phillips screwdriver) and a hammer to mark
the point. This makes it easier to precisely drill the hole. Be careful not to
img
130
Chapter 4: Antennas & Transmission Lines
change the shape of the can doing this by inserting a small block of
wood or other object in the can before tapping it.
Figure 4.35: Mark the hole before drilling.
3. With a small diameter drill bit, make a hole at the center of the plate. In-
crease the diameter of the hole using bits with an increasing diameter.
The hole should fit exactly the N connector. Use the file to smooth the
border of the hole and to remove the painting around it in order to ensure
a better electrical contact with the connector.
Figure 4.36: Carefully drill a pilot hole, then use a larger bit to finish the job.
4. Smooth with the file one end of the wire. Tin the wire for around 0.5 cm
at the same end helping yourself with the vice.
img
Chapter 4: Antennas & Transmission Lines
131
Figure 4.37: Tin the end of the wire before soldering.
5. With the soldering iron, tin the central pin of the connector. Keeping the
wire vertical with the pliers, solder its tinned side in the hole of the cen-
tral pin.
Figure 4.38: Solder the wire to the gold cup on the N connector.
6. Insert a washer and gently screw the nut onto the connector. Trim the
wire at 3.05 cm measured from the bottom part of the nut.
img
132
Chapter 4: Antennas & Transmission Lines
Figure 4.39: The length of the wire is critical.
7. Unscrew the nut from the connector, leaving the washer in place. Insert
the connector into the hole of the can. Screw the nut on the connector
from inside the can.
Figure 4.40: Assemble the antenna.
8. Use the pliers or the monkey wrench to screw firmly the nut on the con-
nector. You are done!
img
Chapter 4: Antennas & Transmission Lines
133
Figure 4.41: Your finished cantenna.
As with the other antenna designs, you should make a weatherproof enclo-
sure for the antenna if you wish to use it outdoors. PVC works well for the
can antenna. Insert the entire can in a large PVC tube, and seal the ends
with caps and glue. You will need to drill a hole in the side of the tube to ac-
commodate the N connector on the side of the can.
Cantenna as dish feed
As with the USB dongle parabolic, you can use the cantenna design as a
feeder for significantly higher gain. Mount the can on the parabolic with the
opening of the can pointed at the center of the dish. Use the technique de-
scribed in the USB dongle antenna example (watching signal strength
changes over time) to find the optimum location of the can for the dish you
are using.
By using a well-built cantenna with a properly tuned parabolic, you can
achieve an overall antenna gain of 30dBi or more. As the size of the para-
bolic increases, so does the potential gain and directivity of the antenna.
With very large parabolas, you can achieve significantly higher gain.
For example, in 2005, a team of college students successfully established a
link from Nevada to Utah in the USA. The link crossed a distance of over
200 kilometers! The wireless enthusiasts used a 3.5 meter satellite dish to
establish an 802.11b link that ran at 11 Mbps, without using an amplifier. De-
tails about this achievement can be found at http://www.wifi-shootout.com/
134
Chapter 4: Antennas & Transmission Lines
NEC2
NEC2 stands for Numerical Electromagnetics Code (version 2) and is a
free antenna modeling package. NEC2 lets you build an antenna model in
3D, and then analyzes the antenna s electromagnetic response. It was de-
veloped more than ten years ago and has been compiled to run on many
different computer systems. NEC2 is particularly effective for analyzing wire-
grid models, but also has some surface patch modeling capability.
The antenna design is described in a text file, and then the model is built us-
ing this text description. An antenna described in NEC2 is given in two parts:
its structure and a sequence of controls. The structure is simply a numeri-
cal description of where the different parts of the antenna are located, and
how the wires are connected up. The controls tell NEC where the RF source
is connected. Once these are defined, the transmitting antenna is then mod-
eled. Because of the reciprocity theorem the transmitting gain pattern is the
same as the receiving one, so modeling the transmission characteristics is
sufficient to understand the antenna's behavior completely.
A frequency or range of frequencies of the RF signal must be specified. The
next important element is the character of the ground. The conductivity of the
earth varies from place to place, but in many cases it plays a vital role in de-
termining the antenna gain pattern.
To run NEC2 on Linux, install the NEC2 package from the URL below. To
launch it, type nec2 and enter the input and output filenames. It is also worth
installing the xnecview package for structure verification and radiation pat-
tern plotting. If all went well you should have a file containing the output. This
can be broken up into various sections, but for a quick idea of what it repre-
sents a gain pattern can be plotted using xnecview. You should see the ex-
pected pattern, horizontally omnidirectional, with a peak at the optimum an-
gle of takeoff. Windows and Mac versions are also available.
The advantage of NEC2 is that we can get an idea of how the antenna works
before building it, and how we can modify the design in order to get the
maximum gain. It is a complex tool and requires some research to learn how
to use it effectively, but it is an invaluable tool for antenna designers.
NEC2 is available from http://www.nec2.org/
Online documentation can be obtained from the "Unofficial NEC Home Page"
at http://www.nittany-scientific.com/nec/ .