ZeePedia

Array Manipulation, Real World Problem and Design Recipe

<< Character Arrays: Arrays Comparisonm, Sorting Arrays Searching arrays, Functions arrays, Multidimensional Arrays
Pointers: Declaration of Pointers, Bubble Sort Example, Pointers and Call By Reference >>
img
CS201 ­ Introduction to Programming
Lecture Handout
Introduction to Programming
Lecture No. 13
Reading Material
Deitel & Deitel ­ C++ How to Program
Chapter 4
4.5, 4.9
Summary
·
Array Manipulation
·
Real World Problem and Design Recipe
·
Exercises
Array Manipulation
We have already discussed what an array is. Identical or similar values are stored in an
array. The identical and similar terms here are related to the context of the problem we
try to solve. For example, height or age of an individual is a number. We don't store
height and age in one array as, in contextual terms, they are different things. These can
not be mixed in one array. So the height of individuals will be stored in one array and the
age in some other one. The idea behind the array is that whenever you have similar data
with multiple values, it is easier and more elegant to store them in an array.
Let's try to find out, how to process arrays. What is the easiest way and what are the
issues related to this process.
As discussed in previous lectures, whenever we come across an array, we start thinking in
terms of loops. We pick up the first element of the array and process it. Then the second
array element is processed and so on. Naturally that falls into an iterative structure.
Page 129
img
CS201 ­ Introduction to Programming
Let's try to understand how to process a two dimensional array. The following example
can help us comprehend it effectively.
Suppose we have a two-dimensional array of numbers. While dealing with a two-
dimensional array of numbers, we should try to understand it in terms of a matrix.
Matrices in mathematics have rows and column and there is always a number at each row
and column intersection. Suppose we have a matrix of dimension 3 * 3 i.e. a simple two-
dimensional array. We want to input some numbers to that array first. After reading these
numbers, we want to output them in such a fashion that the last row is printed first,
followed by second last and so on till the first row that is printed at the bottom. We don't
want to change the column numbers with this output. It is not a difficult task. As it is a
two-dimensional array so there is a row subscript and a column subscript. Following
example will make the matter further clear.
Suppose we have the following array:
int a[3][3];
We will access elements of it as: a[row index][column index] e.g. a[1][2]. This is a single
element at row 1 and column 2 of array a.
The flow chart to read in numbers into the two-dimensional array is given on the next
page. See the code snippet below:
const int maxRows = 3;
const int maxCols = 3;
int row, col;
int a[maxRows][maxCols];
// To input numbers in the array
for (row = 0; row < maxRows; row ++)
{
for(col=0; col < maxCols; col ++)
{
cout << "\n" << "Enter " << row << "," << col << "element: ";
cin >> a[row][col];
}
}
Now let's see what this nested loop structure is doing. The outer loop takes the first row
i.e. row 0, then instantly inner loop begins which reads col 0, 1 and 2 elements of the row
0 into the array. Afterwards, control goes back to the outer loop. The row counter is
incremented and becomes 1 i.e. row 1 or second row is taken for processing. Again, the
inner loop reads all the elements of second row into the array. This process goes on until
all the elements for three rows and three columns array are read and stored in the array
called a.
Page 130
img
CS201 ­ Introduction to Programming
Flow Chart to Input Two-dimensional Array
maxRows = n
maxCols = n
a[maxRows][maxCol
s]
No
row
<
while
Exit
maxRows
Yes
col = 0
No
col
<
while
Exit
maxCols
Yes
row++
Read
a[row][col]
col++
Page 131
img
CS201 ­ Introduction to Programming
Now we want to reverse the rows of the matrix (flip the matrix) and display it. There are
several ways of doing it. You might have already started thinking of how can we flip the
matrix. We may declare a new matrix and copy the array elements into this matrix while
flipping the elements at the same time. But we should keep in mind the problem
statement. The problem statement is 'to read the array elements and then simply display it
in the reverse row order'. It does not state anything about storing the elements inside the
memory.
Please see the flow chart to display the flipped matrix on the next page.
Normally, we start our loops from zero and keep incrementing the counter until a certain
bigger value is attained. But this is not mandatory. We can start from a bigger number
and keep on decrementing the counter every time. To display the rows in reverse order,
we can start from the last row and go to the first row by decrementing the row counter
every time. It is very simple programming trick. However, we have to take care of the
value of the index.
We can write our code inside nested loops for flipping the elements as under-
// To flip the elements of the matrix
cout << '\n' << "The flipped matrix is: " << '\n';
for ( row = maxRows-1; row >= 0; row --)
{
for ( col = 0; col < maxCols; col ++)
{
cout << a [row][col] << '\t';
}
cout << '\n';
}
Note the '\t' character in the above code. It is a tab character that displays tab (spaces) at
the cursor position on the screen. Similary '\n' as told in previous lectures is newline
character which takes the cursor to the new line.
It is better to print the original matrix elements before showing the flipped matrix
elements so that you can really see whether your function has flipped the matrix or not.
To run this function for the big-sized arrays, adjust the values of the maxRows and
maxCols constants as the rest of the program remains the same..
Whenever we work with arrays, normally the loops are there. If the array is single
dimensional, there will be one loop. A two-dimensional arrays is going to have pair of
nested loops and so on.
Page 132
img
Flow
Chart to Display Array Elements in the Reverse
CS201 ­ Introduction to Programming
Row Order
maxRows = n
maxCols = n
a[maxRows][maxCol
Input the array `a'
elements
row = maxRows - 1
No
while
row >= 0
Exit
Yes
col = 0
No
col
<
while
Exit
maxCols
Yes
row--
Print
a[row][col]
Page 133
col++
img
CS201 ­ Introduction to Programming
/* Array Manipulation - Flipping of a Matrix (reversing the row order): This program reads a
matrix (two-dimensional array), displays its contents and also displays the flipped matrix
*/
#include <iostream.h>
const int maxRows = 3;
const int maxCols = 3;
void readMatrix(int arr[][maxCols]);
void displayMatrix(int a[][maxCols]);
void displayFlippedMatrix(int a[][maxCols]);
void main(void)
{
int a[maxRows][maxCols];
// Read the matrix elements into the array
readMatrix(a);
// Display the original matrix
cout << "\n\n" << "The original matrix is: " << '\n';
displayMatrix(a);
// Display the flipped matrix
cout << "\n\n" << "The flipped matrix is: " << '\n';
displayFlippedMatrix(a);
}
void readMatrix(int arr[][maxCols])
{
int row, col;
for (row = 0; row < maxRows; row ++)
{
for(col=0; col < maxCols; col ++)
{
cout << "\n" << "Enter " << row << ", " << col << " element: ";
cin >> arr[row][col];
}
cout << '\n';
Page 134
img
CS201 ­ Introduction to Programming
}
}
void displayMatrix(int a[][maxCols])
{
int row, col;
for (row = 0; row < maxRows; row ++)
{
for(col = 0; col < maxCols; col ++)
{
cout << a[row][col] << '\t';
}
cout << '\n';
}
}
void displayFlippedMatrix(int a[][maxCols])
{
int row, col;
for (row = maxRows - 1; row >= 0; row --)
{
for(col = 0; col < maxCols; col ++)
{
cout << a[row][col] << '\t';
}
cout << '\n';
}
}
Page 135
img
CS201 ­ Introduction to Programming
Till now, we have only solved very simple problems to understand processing of arrays.
You can test your capability of doing so through an exercise by inputting (reading in) a
matrix and print it in reverse column order. Here, the rows remain the same.
Let's move on to slightly more practical problem. Before going ahead, we need to
understand the concept of Transpose of a Matrix. Transpose of a matrix means that when
we interchange rows and columns, the first row becomes the first column, second row
becomes the second column and so on. Mathematically, the transpose can be written as:
A(i,j) should be replaced with A(j,i) where i and j are row and column indexes.
For this purpose, we take a square matrix (a matrix with equal number of rows and
columns) to transpose. Here, if you are thinking in terms of loops, you are absolutely
right. Let's say the array is 'a', with dimension as `arraySize'. Please see the flow chart for
this problem on the next page.
We write a pair of nested loops:
int temp;
for (row = 0; row < arraySize; row ++)
{
for (col = 0; col < arraySize; col ++)
{
// Interchange the values here using the swapping mechanism
temp = a[row][col];  // Save the original value in the temp
variable
a[row][col] = a[col][row];
a[col][row] = temp;  //Take out the original value
}
}
While interchanging values, we should be careful. We can't simply write: a[row][col] =
a[col][row]. We will lose information this way. We need a swapping mechanism here to
interchange the elements properly.
We have yet to do more to get the problem solved. You are strongly recommended to
write this program and run it to see the problem area.
It is something interesting that we are interchanging the value of first row, first column
with itself, which means nothing. When we are doing transpose of a matrix, the diagonal
elements will remain unchanged as the row and column indexes are the same. Then we
interchange the row 0, col 1 element with row 1, col 0. The row 0, col 2 element with row
2, col 0. What will happen when we process second row i.e. row 1. The row 1, col 0 will
be swapped with row 0, col 1 but these are the same elements, already swapped in the
above iteration. Therefore, this is the problem area that elements swapped once are
Page 136
img
CS201 ­ Introduction to Programming
swapped again to their original positions if the loops are run in all the rows and columns.
As a result, the resultant matrix remains unchanged.
No
row
<
arraySize
Yes
col = row
No
col
<
while
arraySize
Yes
row++
temp = a[row][col]
a[row][col] =
a[col][row]
a[col][row] = temp
Page 137
col++
img
CS201 ­ Introduction to Programming
Flow Chart
of Transpose of a Square Matrix
arraySize = n
a[arraySize][arraySiz
]
Input the array `a'
elements
row = 0
No
row
<
Exit
while
arraySize
Yes
col = row
No
col
<
Exit
while
arraySize
Yes
row ++
temp = a[row][col]
a[row][col] =
a[col][row]
[ l][
]t
Page 138
col++
img
CS201 ­ Introduction to Programming
Then what is the solution of the problem?
Now draw a matrix on the paper and cut it diagonally. We will get two triangles i.e. upper
triangle and lower triangle. We only need to interchange one triangle with the other and
not the whole of the matrix. Now the question is, how we can determine the limits of
triangles? By looking at a triangle, let's say upper triangle, we can see that all the rows
are being processed as the triangle crosses every row. Similarly all the columns are being
processed because the first row in the upper triangle covers all the columns. The only
difference is that we will not process the beginning element before starting each row.
That means that we will not start the inner loop (columns loop) with index 0. Rather we
start with the current row number. Therefore, for first row i.e. row 0, we will process
from row 0, col 0 to row 0, col arraySize-1. For second row i.e. row 1, we will process
from row 1, col 1 to row 1, col arraySize-1 while in case of third row i.e. row 2, we will
go from row 2, col 2 to row 2 , col arraySize-1. If you structure the loops in this manner,
the correct behavior of matrix transposition will be found.
The full source code to solve this problem by taking the upper triangle and swapping it
with the lower triangle is given below:
/*  Array Manipulation - Transpose of a Square Matrix: This program reads a matrix (two-
dimensional array), displays its contents, transposes it and then displays the transposed matrix.
*/
#include <iostream.h>
const int arraySize = 3;
void readMatrix(int arr[][arraySize]);
void displayMatrix(int a[][arraySize]);
void transposeMatrix(int a[][arraySize]);
void main(void)
{
int a[arraySize][arraySize];
// Read the matrix elements into the array
readMatrix(a);
// Display the matrix
cout << "\n\n" << "The original matrix is: " << '\n';
displayMatrix(a);
//Transpose the matrix
transposeMatrix(a);
Page 139
img
CS201 ­ Introduction to Programming
//Display the transposed matrix
cout << "\n\n" << "The transposed matrix is: " << '\n';
displayMatrix(a);
}
void readMatrix(int arr[][arraySize])
{
int row, col;
for (row = 0; row < arraySize; row ++)
{
for(col=0; col < arraySize; col ++)
{
cout << "\n" << "Enter " << row << ", " << col << " element: ";
cin >> arr[row][col];
}
cout << '\n';
}
}
void displayMatrix(int a[][arraySize])
{
int row, col;
for (row = 0; row < arraySize; row ++)
{
for(col = 0; col < arraySize; col ++)
{
cout << a[row][col] << '\t';
}
cout << '\n';
}
}
void transposeMatrix(int a[][arraySize])
{
int row, col;
int temp;
for (row = 0; row < arraySize; row ++)
{
Page 140
img
CS201 ­ Introduction to Programming
for (col = row; col < arraySize; col ++)
{
/* Interchange the values here using the swapping mechanism */
temp = a[row][col];
// Save the original value in the temp variable
a[row][col] = a[col][row];
a[col][row] = temp;
//Take out the original value
}
}
}
Page 141
img
CS201 ­ Introduction to Programming
Real Word Problem and Design Recipe
We will take one problem that is not very complex but will follow it rigorously for all
steps of design recipe.
In practical life, the employees get salaries and pay taxes honestly. Sometimes, the
process of drawing salaries and payment of taxes may lead to some interesting situation.
Suppose, a person draws salary of Rs. 10,000 per month. A certain percentage of tax is
charged on that amount, which is deducted every month. But if the salary of the person is
more than Rs. 10,000 per month, then the tax rate is different. Similarly if a person is
getting Rs. 20,000 per month, he/she would be charged more under a different tax rate
slab. The interesting situation develops if there is an anomaly in the tax rates i.e. a person
who is getting higher salary takes home lesser money as compared to the other person
with less gross salary.
To further elaborate it, we suppose that there is company 'C' where 100 or less than 100
persons are employed. The salaries of the employees and their tax rates are known to us.
We are required to list those unlucky persons, who are getting lesser take-home salary
(net salary) than their colleagues with less gross salaries but lower tax rates.
As per our design recipe, let's see what steps we need to follow.
A design recipe asks us to analyze the problem first and write it in a precise statement
that what actual the problem is. Also by formulating the precise statement, we need to
provide some examples to illustrate. At the design phase, we try to break up the problem
into functional units and resort to a detailed designing. Then we move to implementation
stage where the pseudo code is translated into the computer language and then the
program is compiled and run to ensure that it works as expected.
At the first step i.e Analysis, we try to have a precise problem statement. Once it is
established, we try to determine what are the inputs of this program. What data should be
provided to this program. We will also try to determine if there are some constants
required for calculation or manipulation. We list down all the constants. Then we split it
up into functions and modules.
Let's try to make a precise statement of the above problem. The precise problem
statement is:
"Given tax brackets and given employees gross salaries, determine those employees who
actually get less take-home salary than others with lower initial income."
Suppose the tax deduction law states that:
Page 142
img
CS201 ­ Introduction to Programming
-
No tax will be deducted for persons with salaries ranging from Rs. 0 to Rs. 5,000 per
month or in other words tax deduction rate is 0%.
-
5% tax deduction will be made from the persons with salaries ranging from Rs. 5,001
to Rs. 10,000 per month.
-
For persons with salaries ranging from Rs. 10,001 to Rs. 20,000, a 10% tax deduction
rate would be employed.
-
For persons with salaries ranging from Rs. 20,001 and higher, 15% tax deduction
would be made.
Taking these rules, let's formulate the problem.
Consider the example of a person with a salary of Rs. 10,000 per month. As per rules,
he/she would be charged by 5% of tax rate. 5% of 10,000 is 500 rupees. So the take home
salary of the person is Rs. 9500.
Now the unfortunate individual, whose gross salary is Rs, 10,001 falls in the next bracket
of tax rate of 10%. He will have to pay tax worth Rs 1000.1. That means the take home
salary of this person is Rs. 9000.9, which is lesser than the person with lower gross salary
of Rs. 10,000. This is the problem.
We can calculate the net salaries of all individuals, determining all the unlucky ones.
Now we will carry out the analysis of the requirements. For looking into the
requirements, we have to see, how to input the salaries of these people.
As stated in the problem, the number of employees of the company 'C is at most 100. So
we know the size of the array. But for some other company, suppose company 'D', we
don't know the number of employees. Therefore, it makes sense to take input from the
user for the number of employees. Once we have determined the number of employees,
we will input the gross salary of each of employees. But where will we store the gross
salary? For this purpose, we will use the two-dimensional array. In the first column, we
will store the gross salary. Our program after calculating the net salary for each employee
will write (store) it in the second column of the array.
At the next stage, we will find out the unlucky individuals. This will be based on the
analysis of algorithms. At the higher level design, we assume that there would be a way
to determine the unlucky individuals. Finally, a list of unlucky employees would be
prepared. For that, we will simply output the employee numbers.
We want to workout the space and storage requirements of this problem. As earlier
mentioned, we will use a two dimensional array to store the gross and net salaries and
output the list of unlucky employees. That means we need a storage to store that list. For
this, we will take a single dimensional array of 'int' type. We will initialize the array with
zero. '0' means the individual is lucky. Therefore, by default, all individuals are lucky.
Whenever, we will find an unlucky individual by using the two dimensional array, we
will write '1' in single dimensional array for that individual. So this is the storage
requirement of the program.
Afterwards, we will discuss the interface issues. The interface guidelines are the same i.e.
be polite and try to explain what is required from the user. When the program runs the
user will know what is required from him/her. So there would be prompts in the program
Page 143
img
CS201 ­ Introduction to Programming
where the user will key in the data. All the input data will be coming from keyboard and
displayed on the screen. This is a rudimentary interface analysis.
We have distributed the program into four major parts:
1. Input
2. Salary calculation
3. Identification of unlucky individuals and
4. Output
Let's start the coding or detailed design phase of this program.
In a true tradition, all the four parts of the program should be function calls. The main
program is very simple as it contains functions:
-
Get input
-
Calculate salary
-
Locate unlucky individuals
-
Display output
The arrays will be declared inside the main function. As we already know the maximum
number of employees is 100, so we can declare it as a constant:
const int arraySize=100;
double sal[arraySize][2];
int lucky[arraySize] = {0};
//Notice the array initialization
Once this is done inside main, we want to run the input function to read the salaries of the
employees. Now, inside the input data function, we will get value for number of
employees from the user. We have already set the upper limit as 100 but the actual
number of employees will be entered by the user of the program. If we take that input
inside the input data function, what can be the problem. Well, there is no problem in
taking the input within that function but the problem is the declaration of the variable
'numEmps', which contains the current number of employees. If the 'numEmps' variable
is declared inside the input data function, it will be local to that function. After the input
data function returns, the 'numEmps' will no longer be there because it was local to input
data function and not visible in any other function. So it is better to declare the variables
inside the main function. But the problem arises: how the input data function will get
information about it, if we declare it inside main function. We will have to send it to
input data function, either through call by reference or we can declare 'numEmp' as a
global variable so that it is visible in all the functions. Global variables are useful but
tricky. They exist when we need them but they exist even when we don't need them.
Therefore, it might be good to declare this variable 'numEmps' inside main function and
then pass by reference to the input data function.
Page 144
img
CS201 ­ Introduction to Programming
While passing one-dimensional array to the function, we write in the function prototype
as:
f(int a[]);
However, when we pass two-dimensional array to a function, we must specify the
number of columns because this depends on how a computer stores the two dimensional
array in the memory. The computer stores the rows in a contiguous (row after row)
fashion inside memory. Therefore , in order to locate where the first row has finished or
the second row starts, it should know the number of columns. Whenever, we pass two-
dimensional array to a function, the number of columns inside that array should be
specified. We will pass two dimensional array 'sal' to input data function getInput() in the
same manner. We also want to pass 'numEmps' variable by reference using the '&' sign to
this function. This will ensure that whatever the user inputs inside this function
getInput(), will be available in the main function. There is another way that we get input
from the user inside the main function and then pass this by value to the getInput()
function. We are going to do the same in our function.
getInput(double sal[][2], int numEmps);
{
for (int i = 0; i < numEmps; i ++) //Note that this numEmps is local to this
function
{
cin >> sal[i][0];
// Get the gross salary for each
employee
}
}
To calculate tax, we will write a function. This function will be passed in similar
parameters as getInput function to calculate the taxes for all the employees. There is one
important point to reiterate here i.e. by default, arrays are passed by reference. That
means if getInput() function puts some values in the 'sal' array, these are written in the
'sal' array and are available inside main function. The 'numEmps' variable on the other
hand is passed by value to getInput() function. Therefore, any changes done by geInput()
function will not affect the original value of 'numEmps' inside the main function.
We will continue with this problem to determine algorithm that what is the precise
sequence of steps to determine the unlucky employees. For this, we need to analyze a bit
more because it contains a complex 'if' condition. The function to calculate net salary also
has interesting issues which will be explained in the next lecture.
Here is the source code of the first cut solution for real world problem:
* This is the first cut of the program to solve the real world problem of
'Unlucky Employees' */
Page 145
img
CS201 ­ Introduction to Programming
#include <iostream.h>
void getInput(double sal[][2], int numEmps);
void calcNetSal(double sal[][2], int numEmps);
void findUnluckies(double sal[][2], int numEmps, int lucky[]);
void markIfUnlucky(double sal[][2], int numEmps, int lucky[], int upperBound, int empNbr);
void printUnluckies(int lucky[], int numEmps);
void main(void)
{
const int arraySize=100;
double sal[arraySize][2];
int lucky[arraySize] = {0};
int numEmps;
/* Read the actual number of employees in the company */
cout << "\n Please enter the total number of employees in your company: ";
cin >> numEmps;
cout << '\n';
/* Read the gross salaries of the employees into the array 'sal' */
getInput(sal, numEmps);
/* Calculate net salaries of the employees and store them in the array */
cout << "\n\n Calculating the net salaries ... ";
calcNetSal(sal, numEmps);
/* Find the unlucky employees */
cout << "\n\n Locating the unlucky employees ... ";
findUnluckies(sal, numEmps, lucky);
/* Print the unlucky employee numbers */
cout << "\n\n Printing the unlucky employees ... ";
printUnluckies(lucky, numEmps);
}
void getInput(double sal[][2], int numEmps)
{
for (int i = 0; i < numEmps; i++) //Note that this numEmps is local to this function
{
cout << "\n Please enter the gross salary for employee no." << i << ": ";
cin >> sal[i][0];
// Store the gross salary for each employee
}
}
Page 146
img
CS201 ­ Introduction to Programming
void calcNetSal(double sal[][2], int numEmps)
{
for (int i = 0; i < numEmps; i++) //Note that this numEmps is local to this function
{
if(sal[i][0] >= 0 && sal[i][0] <= 5000)
{
/* There is no tax deduction */
sal[i][1] = sal[i][0];
}
else if(sal[i][0] >= 5001 && sal[i][0] <= 10000)
{
/* Tax deduction is 5% */
sal[i][1] = sal[i][0] - (.05 * sal[i][0]);
}
else if (sal[i][0] >= 10001 && sal[i][0] <= 20000)
{
/* Tax deduction is 10% */
sal[i][1] = sal[i][0] - (.10 * sal[i][0]);
}
else if (sal[i][0] >= 20001)
{
/* Tax deduction is 15% */
sal[i][1] = sal[i][0] - (.15 * sal[i][0]);
}
else
{
/* No need to do anything here */
}
}
}
void findUnluckies(double sal[][2], int numEmps, int lucky[])
{
for (int i = 0; i < numEmps; i++) //Note that this numEmps is local to this function
{
if(sal[i][0] >= 0 && sal[i][0] <= 5000)
{
/* No need to check for unlucky employees for this tax bracket */
;
}
else if(sal[i][0] >= 5001 && sal[i][0] <= 10000)
{
markIfUnlucky(sal, numEmps, lucky, 5001, i);
}
else if (sal[i][0] >= 10001 && sal[i][0] <= 20000)
{
Page 147
img
CS201 ­ Introduction to Programming
markIfUnlucky(sal, numEmps, lucky, 10001, i);
}
else if (sal[i][0] >= 20001)
{
markIfUnlucky(sal, numEmps, lucky, 20001, i);
}
}
}
void markIfUnlucky(double sal[][2], int numEmps, int lucky[], int upperBound, int empNbr)
{
for (int i = 0; i < numEmps; i++)
{
/*
See the if the condition below, it will mark the employee
unlucky even if an employee in the higher tax bracket is getting
the same amount of net salary as that of a person in the lower
tax bracket
*/
if (sal[i][0] < upperBound && sal[i][1] >= sal[empNbr][1])
{
lucky[empNbr] = 1;
//Employee marked as unlucky
break;
}
}
}
void printUnluckies(int lucky[], int numEmps)
{
for (int i = 0; i < numEmps; i++)
{
if(lucky[i] == 1)
{
cout <<"\n Employee No.: " << i;
}
}
}
Exercises
1. Suppose you have a Square matrix of order 5 * 5. Draw flow chart and write a
program to input (read in) a matrix and print it in reverse column order, the rows
remain the same.
Page 148
img
CS201 ­ Introduction to Programming
2. Suppose you have a Square matrix of order 5 * 5. Draw flow chart and write a
program to transpose the matrix, take lower triangle and swap it with upper
triangle.
3. An Identity matrix is a square matrix whose diagonal elements are '1' and
remaining elements are '0'. Suppose you are given a square matrix of size n * n.
Write a program to determine if this is an Identity matrix.
Page 149
Table of Contents:
  1. What is programming
  2. System Software, Application Software, C language
  3. C language: Variables, Data Types, Arithmetic Operators, Precedence of Operators
  4. C++: Examples of Expressions, Use of Operators
  5. Flow Charting, if/else structure, Logical Operators
  6. Repetition Structure (Loop), Overflow Condition, Infinite Loop, Properties of While loop, Flow Chart
  7. Do-While Statement, for Statement, Increment/decrement Operators
  8. Switch Statement, Break Statement, Continue Statement, Rules for structured Programming/Flow Charting
  9. Functions in C: Structure of a Function, Declaration and Definition of a Function
  10. Header Files, Scope of Identifiers, Functions, Call by Value, Call by Reference
  11. Arrays: Initialization of Arrays, Copying Arrays, Linear Search
  12. Character Arrays: Arrays Comparisonm, Sorting Arrays Searching arrays, Functions arrays, Multidimensional Arrays
  13. Array Manipulation, Real World Problem and Design Recipe
  14. Pointers: Declaration of Pointers, Bubble Sort Example, Pointers and Call By Reference
  15. Introduction, Relationship between Pointers and Arrays, Pointer Expressions and Arithmetic, Pointers Comparison, Pointer, String and Arrays
  16. Multi-dimensional Arrays, Pointers to Pointers, Command-line Arguments
  17. String Handling, String Manipulation Functions, Character Handling Functions, String Conversion Functions
  18. Files: Text File Handling, Output File Handling
  19. Sequential Access Files, Random Access Files, Setting the Position in a File, seekg() and tellg() Functions
  20. Structures, Declaration of a Structure, Initializing Structures, Functions and structures, Arrays of structures, sizeof operator
  21. Bit Manipulation Operators, AND Operator, OR Operator, Exclusive OR Operator, NOT Operator Bit Flags Masking Unsigned Integers
  22. Bitwise Manipulation and Assignment Operator, Programming Constructs
  23. Pre-processor, include directive, define directive, Other Preprocessor Directives, Macros
  24. Dynamic Memory Allocation, calloc, malloc, realloc Function, Dangling Pointers
  25. History of C/C++, Structured Programming, Default Function Arguments
  26. Classes and Objects, Structure of a class, Constructor
  27. Classes And Objects, Types of Constructors, Utility Functions, Destructors
  28. Memory Allocation in C++, Operator and Classes, Structures, Function in C++,
  29. Declaration of Friend Functions, Friend Classes
  30. Difference Between References and Pointers, Dangling References
  31. Operator Overloading, Non-member Operator Functions
  32. Overloading Minus Operator, Operators with Date Class, Unary Operators
  33. Assignment Operator, Self Assignmentm, Pointer, Conversions
  34. Dynamic Arrays of Objects, Overloading new and delete Operators
  35. Source and Destination of streams, Formatted Input and Output, Buffered Input/Output
  36. Stream Manipulations, Manipulators, Non Parameterized Manipulators, Formatting Manipulation
  37. Overloading Insertion and Extraction Operators
  38. User Defined Manipulator, Static keyword, Static Objects
  39. Pointers, References, Call by Value, Call by Reference, Dynamic Memory Allocation
  40. Advantages of Objects as Class Members, Structures as Class Members
  41. Overloading Template Functions, Template Functions and Objects
  42. Class Templates and Nontype Parameters, Templates and Static Members
  43. Matrices, Design Recipe, Problem Analysis, Design Issues and Class Interface
  44. Matrix Constructor, Matrix Class, Utility Functions of Matrix, Input, Transpose Function
  45. Operator Functions: Assignment, Addition, Plus-equal, Overloaded Plus, Minus, Multiplication, Insertion and Extraction